{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# A Temporary Test Notebook" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "x = np.random.randn(100)\n", "y = np.random.randn(100) + x" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsoElEQVR4nO3df2xV553n8c+1E2xIfW9iErimOMHQaCuPt7DQ8KNEmSQDjTVd0lSrtNMJq5BWbOuFqAzVTqCt6lrViGYbKR0lGZpmO6RaJklHrRJK1XiH5hdKBEsVl04dD5mFmoYxNhDc3Ou4sWF8z/5BroPt++Oce885z/nxfklI8fWxz3OPHT+f85zn+T4Jy7IsAQAAGFBjugEAACC+CCIAAMAYgggAADCGIAIAAIwhiAAAAGMIIgAAwBiCCAAAMIYgAgAAjLnCdANKyeVyOn36tBoaGpRIJEw3BwAA2GBZlkZGRrRgwQLV1JQe8wh0EDl9+rSam5tNNwMAAFTg1KlTWrhwYcljAh1EGhoaJF16I8lk0nBrAACAHdlsVs3NzZP9eCmBDiL5xzHJZJIgAgBAyNiZVsFkVQAAYAxBBAAAGEMQAQAAxhBEAACAMQQRAABgDEEEAAAYQxABAADGEEQAAIAxgS5oBgAAvDGRs3Skf1hnR8Y0r6FeK1saVVvj/75uBBEAAGKmu3dQXfv7NJgZm3ytKVWvzg2tam9r8rUtPJoBACBGunsH1bG3Z0oIkaShzJg69vaou3fQ1/YQRAAAiImJnKWu/X2yCnwu/1rX/j5N5Aod4Q2CCAAAMXGkf3jGSMjlLEmDmTEd6R/2rU0EEQAAYuLsSPEQUslxbiCIAAAQE/Ma6l09zg0EEQAAYmJlS6OaUvUqtkg3oUurZ1a2NPrWJoIIAAAxUVuTUOeGVkmaEUbyH3duaPW1nghBBACAGGlva9LujcuVTk19/JJO1Wv3xuW+1xGhoBkAADHT3tak9a1pKqsCAAAzamsSWrNkrulm8GgGAACYQxABAADGEEQAAIAxBBEAAGAMQQQAABhDEAEAAMYQRAAAgDG+BZHvfOc7SiQS2rZtm1+nBAAAAedLEPnVr36lxx9/XB/72Mf8OB0AAAgJz4PIu+++q3vuuUdPPPGErrnmGq9PBwAAQsTzILJlyxZ96lOf0rp168oeOz4+rmw2O+UfAACILk/3mnnmmWfU09OjX/3qV7aO37Vrl7q6urxsEgAACBDPRkROnTqlr3zlK/qHf/gH1dfXl/8CSTt37lQmk5n8d+rUKa+aBwAAAiBhWZblxTd+7rnn9JnPfEa1tbWTr01MTCiRSKimpkbj4+NTPldINptVKpVSJpNRMpn0opkAAMBlTvpvzx7N/Nmf/Zl++9vfTnntvvvu00c/+lE98MADZUMIAACIPs+CSENDg9ra2qa8dtVVV2nu3LkzXgcAAPFEZVUAAGCMp6tmpnv55Zf9PB0AAAg4RkQAAIAxBBEAAGAMQQQAABhDEAEAAMYQRAAAgDEEEQAAYAxBBAAAGEMQAQAAxhBEAACAMQQRAABgDEEEAAAYQxABAADGEEQAAIAxBBEAAGAMQQQAABhDEAEAAMYQRAAAgDEEEQAAYAxBBAAAGEMQAQAAxhBEAACAMQQRAABgDEEEAAAYc4XpBgAAgMImcpaO9A/r7MiY5jXUa2VLo2prEqab5SqCCAAAAdTdO6iu/X0azIxNvtaUqlfnhla1tzUZbJm7eDQDAEDAdPcOqmNvz5QQIklDmTF17O1Rd++goZa5jyACAECATOQsde3vk1Xgc/nXuvb3aSJX6IjwIYgAABAgR/qHZ4yEXM6SNJgZ05H+Yf8a5SGCCAAAAXJ2pHgIqeS4oCOIAAAQIPMa6l09LugIIgAABMjKlkY1pepVbJFuQpdWz6xsafSzWZ4hiAAAECC1NQl1bmiVpBlhJP9x54bWyNQTIYgAABAw7W1N2r1xudKpqY9f0ql67d64PFJ1RChoBgBAALW3NWl9a5rKqgAAwIzamoTWLJlruhmeIogAQASY3JMkDvuhwDsEEQAIOZN7ksRlPxR4h8mqABBiJvckidN+KPAOQQQAQsrkniRx2w8F3iGIAEBImdyTJG77ocA7BBEACCmTe5LEbT8UeIcgAgAhZXJPkrjthwLvEEQAIKRM7kkSt/1Q4B2CCACUMJGzdOjEee07OqBDJ857PvnSyflM7kkSt/1Q4J2EZVmBndKczWaVSqWUyWSUTCZNNwdAzPhdI6PS81FHBEHjpP8miACIDScVQPM1Mqb/gcwf7fbGY9Wej8qqCBIn/TeVVQHEgpM793I1MhK6VCNjfWvalQ7XjfOZ3JMkDvuhwDvMEQEQeU4rgPpdI4OaHIgzggiASKukAqjfNTKoyYE4I4gAiLRKRhv8rpFBTQ7EGUEEQKRVMtrgd40ManIgzggiACKtktEGv2tkUJMDcUYQARBplY42tLc1affG5UqnpgaZdKre9aW7Js4HBAV1RABEXn7VjKQpk1bt1Ojwu0ZG1M+HeKCgGQBMQwXQmbgm8ApBBAAK4O7/A35XjkW8UFkVAAqgAuglfleOBUrxdLLqrl27dNNNN6mhoUHz5s3TXXfdpTfffNPLUwIAyqCSK4LE0yDyyiuvaMuWLTp8+LAOHDigixcv6pOf/KRGR0e9PC0AoAQquSJIPH00093dPeXjJ598UvPmzdPrr7+uW265xctTAwCKoJIrgsTXOSKZTEaS1NhYuDrg+Pi4xsfHJz/OZrO+tAsA4iRfW2UoM1ZwnkhCl+qXUMkVfvCtoFkul9O2bdu0du1atbW1FTxm165dSqVSk/+am5v9ah4AxAaVXBEkvi3f7ejo0PPPP69XX31VCxcuLHhMoRGR5uZmlu8CgAeoIwKvBG757tatW/Xzn/9cBw8eLBpCJKmurk51dXV+NAkAYq+9rUnrW9PUVoFRngYRy7J0//3369lnn9XLL7+slpYWL08HAHDIbm0VisHBK54GkS1btuipp57Svn371NDQoKGhIUlSKpXS7NmzvTw1AMAlPMKBlzydI5JIFE7Le/bs0aZNm8p+PSXeAfiBu/3iKAWPSgRmjkiAt7EBAEnc7ZdCKXj4wbfluwAQNPm7/enlzocyY+rY26Pu3kFDLQsGSsHDDwQRALFU7m5funS3P5GL78gupeDhB4IIEGITOUuHTpzXvqMDOnTifKw7Tae42y+PUvDwg68l3gG4J8xzG4IwOZS7/fIoBQ8/EESAECq2kiE/tyHIKxmCEqC42y8vXwq+Y2+PEtKU3zdKwcMtPJoBQibMcxuCNDk0f7dfrAtN6FJAivvdfntbk3ZvXK50amogS6fqAx14ER6MiAAh42Rug52KmX4J2lJQ7vbtK1QKfsUN1+j13/9B+44OUHsFVSGIACET1rkNQQxQ+bv96Y+K0iGZa+OFYvN3Li8F3907qD/97kvGH68hGggiQMiEdW5DNQHKy8mtlWz8FoTJtl6wM3+n2PykwcyYvry3R19cu0jrWtORuSbwHkEECJmwrmSoNED5MbnV7sZvfrXHBDsToNe3pos+Xsv74Wsn9cPXTkbimsAfTFYFQiY/t0HSjImWQZ7bUMnk0CBNbg1Ke7yoHWN3AvTh350v+XjtcnavCbVwwIgIEEJhnNvgdHKo35Nbyz1umchZ+tbP3jA62dar0Ri783cOnThv+3vauSZRHV2CMwQRIKQqmdtgmpMA5efkVjsd4qMvHtdQdtyX9hRrY7G5GdXWjrE/sdnZaEWpaxLmWjhwF0EECDEncxuCwm6A8mt1kJ0OUZIe/uW/+tKe6SZylg7/7rx2/PS3RWOApepGY+zO31mz+Fr9tGeg6PykYqZfk6At5YZZBBEAvrMToPxYHWS3Q7Qs+92um6uVCo3UFFPNaIzdCdCrl8wt+nitlOnXJIhLuWEOk1UBBJIflU/tdoilHslczs1KrMUmxpYylHmvonM5mQBdrNJqIcV+RmGthQNvEEQABJIfq4Pc7ujcWq1UaqSmlOHRCxWf00kp9/a2Jr36wO16evNqfWHtIknOfkZhrYUDb/BoBkBgeb06yM2O7q/W3eja5MpyIzXFNH6orqrzOpkAnX+8tmbJXK1saXT0MwprLRx4gyACINC8XB1kt0O0LEtnsuNFRyiaUvXaevuNVbcnr9KRmnSy+mBVyQRopz8j9vnB5QgiAALPq9VBdjtESVV1mk5LwlcyUmN6p2CnP6Mw1sKBNwgiAGKhWBgo1iE2XjVL37rzT5SaPUtnR8a0bd2NevrIW1MmrtrpNCsp2lVupOZyYRpBmP4zWN+aDl0tHLgvYTlZl+azbDarVCqlTCajZDJpujkApinUuUsKXMdiJwz84p9P6xv7ejU8enHymJqEdHnF8XSyXp9feb0WXTvH1nsrVqMk76/W3aitt99YtOpox94eSaWXyYalEilVVOPFSf9NEAFQkUIdy9VzrpQkvfPHDzpz051NsTCQ7/rzBctKBYZCX1Pu/UzkLN384ItlJ52mk/X61p2Fr0+ha5xO1r0fhq6aEYaKjfqY3i241M/AkvSFtYu0nh17I4UgAsBT5e70L+ek83ZbuTBw+WRUu7VC8l/z6gO3l+w0D504r88/cdj29yx2feyGiGIjDncubdLPfjNobCTCbiDzu13wlpP+mzoiABxxWuPi8t1b/d5Z1e2CZZd/zZH+4ZLHOV35Uuz65CeBfnrZh7VmydySj3Gmv9fBzJgeP9hvdLdgJ0uRTe2qDLMIIgAcqaTGhd3O221eVuYs972drHyp5vpUUvzMz3Do5GdgMrTCHIIIAEeq6dz9LtntZWXOct+7XIn6Qiq5PpUWP/MrHDr9GZgKrTCHIALAkWo6d79LdtvdryadrLMdGOzucXN5iXq7Krk+1YY7r8NhJYFMYp+ZOCGIALBlImfp0InzGsq8p8arZjnqWNzYoK4Sdver+dadf1LwmOmc1uyY3L8lWbr0ejXXp9pwd22VZeHLKfUzKIV9ZuKDIAKgrO7eQd384Iv6/BOH9Vf/+BsNj16wPSfBdMEtO5u5FTtmenOnbwCXD2f7jg7o0InzBec1tLc16Zv/ufTIiKXKr0+lIw55X/3Ho55PDnVjx94wsvP7AZbvAijDyVLda+ZcKUvBqiOSZ2cZ7PRjVtxwjV7//R8Kfo3dAl12lq9ePedKvf6N9RUHNbvFzwrxc3l1/vr+sm9IP3ztpNG2eC3uBdyoIwLAFXZrQKRmX6kvrF00ufFb0Cqrus1OkbR8Z2O3nsjTm1dXtZ9OqToi+44Oaihb/GdotzaKm6LcUTv5/YgqJ/03e80ABZiuRBkUdldkZN67qO/98v/pP6Qb1N7W5MkGdUFRarmspUudTdf+Pq1vTau2JmF70mW1kzNL7YB7y43zdM8P/2/Rr718pYpfPzsvd1U2yenvBwgiwAxRvlNzqpKiXFH/A2u3SFq+U7c76dKNyZnFdsB9e9RewTa/V6p4tauySU5/P8BkVWCKYhUq41rx0c2iXFGZuOd0hMPuEmIvJ2f6GYbizq8RsChhRAR4H0OqMznZjj6v0B/YKI0yOe3U88tXO/b2TG7ylufXiqJyP8f8HJEorFQxjdDnHCMiwPucDKnGhRtFuaI2ylTJCIedJcResltPJS4B20tBGAELG4II8D6GVAurpihXuVEmKXz7ilTaqbe3NenVB27X05tX62//Ypme3rxarz5wu28jQqbDUFwQ+pzj0QzwPoZUi1vfmlZD/ZXae/j3er53aMbni/2BjerEvXynPv1xU7rE46YgrMSK6kqVoKnk9yPOCCLA+3iOXlih+R01CenyQYxif2CjPMrkpFMP0hyZKK5UCSJCn30EEeB9QZhUGDTFCjPlyyB+Ye0irW9NF/0DG/VRJjuderFrmJ8jU+1jkSCMtKAwQp89BBHgMgypfsDOKqLne4f09U8VD2dxH2XyeiVWkEZagEoRRIBpGFK9xI35HdWOMoX9bt/LOTJej7QAfiGIAAUwpOre/I5KR5micLdv9xq+dvxtRyGLmjeIEoIIgILcnN/hdJQpKnf7dq/hoy8d1097/s12yIrqaiTEE3VEABTkdmGm/CjTp5d9WGuWzC35OCYqtUfKXcPLOSnwFuXVSIgfggiAgkwVZopShdtS13A6JyEr6quREC8EEQBFmajG6cXdvskN94pdw0LshizKiCNKmCMCoCS/VxG5fbcfhEmv+Wv48IE39ehLJ8oeXy5kUfMGUcKICICy7M7vqMT00YoVN1zj2t2+kw33vB41qa1JaM3ia20de+1Vpff1kdg7BtHBiAgAY4qNVty5tEk/ONhf1d2+kyWuB/qG/Bk1sZvfbB5HzRtEAUEECIAgFu5ys02FvteBvqGiS3R/cLBf/+2WFv3sN4MVV7i1O+n10ReP63u//Fdflgq//e64q8dJ1LxB+BFEAMOCMIfByzb94p9P6xv7ejU8enHytXSyTmP/nis5WvGz3wzqlf9xm17//R8qCkMH+mbuElzIntf6fSsMxmoXYCbmiAAGOZnDEMY27fpFn/77U7+eEkIkaSg7rnf+eLHIV30wWvH67/9Q0dyUiZyl546etnXsO++Vb4dbS4VZ7QLMRBABDAli4S432/SLfx7U4wf7q2pPpQW5jvQPa3j0Qtnjrqqr9bQd05mqzQIEGUEEMCSIhbvcatNEztI39vVW3Z5KH1HYDQ5/eqO9VSxuPiphtQswFXNEAEOCWKbbrTbZHZEoJqFLHXOljyjsBod7Vi3Sr09lNJQZKzgKVG07imG1C/ABz0dEHnvsMS1atEj19fVatWqVjhw54vUpgVAI4sRFt9pUTXhy4xGF3bkYq5fMNfaoxMvaLECYeBpEfvzjH2v79u3q7OxUT0+Pli5dqjvuuENnz5718rSIIJMlur0SxImLbrXJbqC5qq5W6aT7jyiczMXgUQlgVsKyLM/+oq9atUo33XSTHn30UUlSLpdTc3Oz7r//fu3YsaPs12ezWaVSKWUyGSWTSa+aiYAL4vJWt+RXqEiFC3eZ6AjdaNNEztLND75Ycr6JJP3dX/4n3dHW5NkjCie/O0Gs5QKElZP+27MgcuHCBc2ZM0c/+clPdNddd02+fu+99+qdd97Rvn37ZnzN+Pi4xsc/KOSTzWbV3NxMEImxfKc4/ZfUZEfttiAGrVJtsju3odjPLu9Lt7Ro55+3evQOPhDGgBHGNgOXcxJEPJus+vbbb2tiYkLz58+f8vr8+fN17Nixgl+za9cudXV1edUkhIyTEt1B/CNttzNxa+Kim51XsTYd6BuaMdJRLDTlH3lMDzRzr5qlb3+6TX/+MX9CVtgqjwYxmAJeCtSqmZ07d2r79u2TH+dHRBBPTpaSBq2jcdqZVNtZetF5TW9TsRGOUqXQWR3iTCXXGAg7zyarXnvttaqtrdWZM2emvH7mzBml0+mCX1NXV6dkMjnlH+IriMtb7fC7Wqof56um0FkYV4eYmBwdxAJ3gB88CyKzZs3SihUr9MILL0y+lsvl9MILL2jNmjVenRYREsTlreX43Zn4db4gFl/zSnfvoG5+8EV9/onD+sozR/X5Jw7r5gdf9LzcfpyuMXA5T5fvbt++XU888YR+9KMf6V/+5V/U0dGh0dFR3XfffV6eFhERxOWt5fjdmfh1vrCOTjllcu+fuFxjYDpP54h87nOf07lz5/TNb35TQ0NDWrZsmbq7u2dMYAUKydeC6Njbo4QKLyUN2r4cfncmfp3PyehUWFd8uD052ul1COMIIOAGzyerbt26VVu3bvX6NIioYisv0gFdReB3Z+LX+Va2NCqdrNdQtnCgyZdC/8PouO1VNUHj5uToSiYP50cA/S43D5gWqFUzQCFhWnnhd2fi1/kO9A1p7N8nCn4u/1O4c2mTtjz169Cu+HBrdKnSlS9hHAEE3MDuuwgFUysvnK6e8Hubdz/Ol+9Y3/njxYKfv3rOlXrsL5frZ78ZDPWKDzdGl6qdPEy5ecQRIyJAEZXW5vD7cZKX5yvVsebVXVGj1OwrQ1vzJc+N0SU3Hu+EaQQQcANBBCig2sJSfncmXp2vXMcqSUPZcR363du2vl+QV3y48WjErcc7YasGC1SDIALbwroaophi78et1RN+dyZenO9A35DNI+39HgR9xUe1o0usfAGcI4jAlqjtf1Hq/aRmzwrtYwY3w2J376D+/rWTto5ds2Suftrzb5FY8VHN6BIrXwDnCCIoK2r7X5R7P/etXWTr+wTtMYObYTE/KmRHU6peqxfPjdSKj0pHl1j5AjjHqhmUFLX9L+y8n31HT9v6XkEaXne7IqiduSF5+Y6VFR+XcB0AZxgRQUlh3gG3EDvv5/zoBTVedaX+MHqx4uF1P+fTuF0RVLI/2vPFtYumdKys+LiE6wDYRxBBSVHb/8JuOz+z7MP6+9dOVjS87vd8Gi/Cot3RnnWtM3fSZsXHJVwHwB4ezaCkqK0CcNLBVjK8bmLTNC/CohsbDjotBgcgnhgRQUlRWwXg5P3U1iQcDa978YjEDi/Cot1Jl5J06MT5GdcnaqusAHiHIIKSorYKwOn7cTK8bmo+jVdhsVxNDUkFN7i7c2mTfnCwPzKrrIIuavV9ED8Jy7ICO16azWaVSqWUyWSUTCZNNyfWonaH68X72Xd0QF955mjZ4/72L5bp08s+XNE5isk/EpIKh6tqOv9CHd2BvqGCS6Cnh7vp8qHo1Qdup7N0QdT+v0R0OOm/CSKwLWp3Xm6/n0MnzuvzTxwue9zTm1eXHRGppG1+dUoTOWvGSIhTdq4BSitWD8eN8AlUy0n/zaMZ2Ba1VQBuvx+3HpFUs9leuTktboQvJzVGignLKqugMjUfCfACQQRwiRvzaaqtYlsqXLk1YuJGiAjLKqugilp9H8Qby3cBF1VTVdPLKrZuLiuuJkTYWfaL8qJW3wfxxogI4LJKq2p6dZfr9jB+uUdQxYRxlVVQRa2+D+KNERHAA/lHJJ9e9mGtWTLXVsfr1V2uk4BjR/4RlKSiBc8KuXrOlUygdIkbBeeAoCCIAAHh1V2uFwGn2COoUuquqNH6AiXh4VypMMjIE8KGIAL4qFTZc6/ucr0KOO1tTXr1gdv19ObV2nrbR8oeP5Qdtz3qgvLY5RdRwRwRwCflVq14VcXWyzL9+UdQTJ40g11+EQWMiAA+sLtqJX+XOz9ZN+W4+cm6iu9y/RjGZ/KkOZXMRwKChCACeKyyZbnFIkNlvB7GZ/IkgErxaAbwmJNVK5n3LhQsaHYmW/2Gce1tTbr9o/P1vw+d1O+H/6gbGufov65ZpFlXVH8/ErXNEQH4hyACeMzuvIihzHv6n//nTc/Kdheao/K/Xu13bS+acrv1MnkSQCEEEURKEDfmszsvYnj0gmdlu6stHW9XnCdPBvF3DwgDgggiI6hbottdtdL4oboCn53J6coTvzdIi9rmiHYE9XcPCAMmq8I1pWpkeM3NvVTcZnfVSjrpzcoTtyurYqog/+4BYcCISICEeWjX5B1hGLZEtzN/YiJneVLvgxof3gnD7x4QdASRgAjz0K5f8w+KCcuW6OXmT3i18oQaH94Jy+8eEGQ8mgmAMA/terl1vV1huuMvV3zKi3of1PjwTph+94CgYkTEsLAP7QbhjjBqd/xurzyhxod3ova7B5jAiIhhYZ9IGIQ7wije8btdtpsN0rwRxd89wG+MiBgWhI68GkG4I+SO35441/jwCr97QPUYETEsCB15NYJyR8gdvz1skOY+fveA6jAiYpiXW7T7IUh3hGG74w/zcm1MFbbfPSBIEpZl+Vd1yqFsNqtUKqVMJqNkMmm6OZ7Jr5qRCnfkYbirCvPyYxO4XgCizEn/TRAJiCh0TNzh21Os7kqYgicAlEIQCSk68uibyFm6+cEXi66Uyj+Ke/WB2/nZAwgtJ/03c0QCJI6bhcVNEOquAECQsGoG8FHYl2sDgNsIIoCPwr5cGwDcRhABfBSUuisAEBQEEaAKEzlLh06c176jAzp04nzZzf3ydVckzQgjVOIEEEdMVoUxYV8lVOmS63wlzulfmw7Zcm1ET9j/n0Q4sXwXRoS9boobtUD4o48gCfv/kwgW6ogg0MJe0ItaIIiasP8/ieBx0n8zRwS+mshZ6trfV3BfnfxrXfv7ys61MMlJLRAg6KLw/yTCjTki8NT0xw85ywp9QS9qgSBKKLIH0wgi8EyhZ85Xz77S1tcGuROnFgiihGAN0wgi8ESxZ87vvHfR1tcHuRPP1wIZyowVHM7OzxGhFgjCgGAN05gjAteVeuZcThgKeoWpFojTOieIH4rswTRGROC6cs+ciwlaJ15KGGqBsBwTduSDdcfeHiWkKTcQYfp/EuHF8l24bt/RAX3lmaNlj7t69pVTHtWEsZMMai0QlmPCKYIr3OSk/2ZEBK6z+yz5sb9crpqaROA6cSdqaxKBW0lQbjlmQpeWY65vTYfuesM77W1NWt+aDmSwRrR5EkROnjypb3/723rxxRc1NDSkBQsWaOPGjfr617+uWbNmeXFKBIjdyZyrl8zlj5wHWI6JSgUxWCP6PJmseuzYMeVyOT3++ON644039PDDD+v73/++vva1r3lxOgRMmCZzRhHLMQGEiScjIu3t7Wpvb5/8ePHixXrzzTe1e/duPfTQQ16cEgEThsmcUcVyTABh4tsckUwmo8bG0su/xsfHNT4+PvlxNpv1ulnwUFyeOZuasFrsvNQ5ARAmvgSR48eP65FHHik7GrJr1y51dXX50ST4JOrPnE2tNCh3XpZjAggLR3NEduzYoUQiUfLfsWPHpnzNwMCA2tvbdffdd2vz5s0lv//OnTuVyWQm/506dcr5OwJ8kl8iO31i6FBmTB17e9TdO2jsvPlHY+nU1Mcv6VQ9S3cBBIqjOiLnzp3T+fPnSx6zePHiyZUxp0+f1q233qrVq1frySefVE2Ns7mx1BFBUE3kLN384ItFV6fkH3+8+sDtro08TOQsHT5xXlue6ilaKn/6eYNa5wRAtHlWR+S6667TddddZ+vYgYEB3XbbbVqxYoX27NnjOIQAQeb3EtlCj2LsnDfqj8YAhJ8nc0QGBgZ066236oYbbtBDDz2kc+fOTX4unU57cUrAV34ukS1WJdXr8wKAHzwJIgcOHNDx48d1/PhxLVy4cMrnAlxRHi6K+iMBv5bIVrqBIEtzAYSFJ0Fk06ZN2rRpkxffGiEQhz0r/Foi63QDQZbmAggbJm7AVaZWkvjNr+qxTh6xsDQXQBgRROCacputSZc2W5vIRePxnB9LZJ08YmFpLoAwYvdduCaOm615XT223CMgSbp69pV67J7lWr2YTQQBhA9BBK6J62ZrXi6RzT8CKlUl9Tv/5T9q7Ueu9eT8AOA1Hs3ANWy25g2qpAKIMkZE4Bo2W/NOXDYQBBA/BBG4xs5jBFZ0VI4qqQCiiEczcBWPEQAATjAiAtfxGAEAYBdBBJ7gMQIAwA4ezQAAAGMIIgAAwBiCCAAAMIYgAgAAjCGIAAAAYwgiAADAGIIIAAAwhiACAACMoaAZECATOYuKtABihSACBER376C69vdpMDM2+VpTql6dG1rZowdAZPFoBgiA7t5BdeztmRJCJGkoM6aOvT3q7h001DIA8BZBBDBsImepa3+frAKfy7/Wtb9PE7lCRwBAuBFEAMOO9A/PGAm5nCVpMDOmI/3D/jUKAHxCEAEMOztSPIRUchwAhAlBBDBsXkO9q8cBQJgQRADDVrY0qilVr2KLdBO6tHpmZUujn80CAF8QRADDamsS6tzQKkkzwkj+484NrdQTARBJBBEgANrbmrR743KlU1Mfv6RT9dq9cTl1RABEFgXNgIBob2vS+tY0lVUBxEosg0gcymjH4T1GUW1NQmuWzDXdDADwTeyCSBzKaMfhPQIAoiFWc0TiUEY7Du8RABAdsQkicSijHYf3CACIltgEkTiU0Y7DewQAREtsgkgcymjH4T0CAKIlNkEkDmW04/AeAQDREpsgEocy2nF4jwCAaIlNEIlDGe04vEcAQLTEJohI8SijHYf3CACIjoRlWYFdy5nNZpVKpZTJZJRMJl37vnGoOhqH9wgACCYn/XfsKqtK8SijHYf3CAAIv1g9mgEAAMFCEAEAAMYQRAAAgDEEEQAAYAxBBAAAGEMQAQAAxhBEAACAMQQRAABgDEEEAAAYQxABAADGEEQAAIAxBBEAAGAMQQQAABhDEAEAAMZcYboBiK6JnKUj/cM6OzKmeQ31WtnSqNqahOlmAQAChCACT3T3Dqprf58GM2OTrzWl6tW5oVXtbU0GWwYACBLPH82Mj49r2bJlSiQSOnr0qNenQwB09w6qY2/PlBAiSUOZMXXs7VF376ChlgEAgsbzIPLXf/3XWrBggdenQUBM5Cx17e+TVeBz+de69vdpIlfoCABA3HgaRJ5//nn90z/9kx566CEvT4MAOdI/PGMk5HKWpMHMmI70D/vXKABAYHk2R+TMmTPavHmznnvuOc2ZM8fW14yPj2t8fHzy42w261Xz4JGzI8VDSCXHAQCizZMREcuytGnTJn35y1/Wxz/+cdtft2vXLqVSqcl/zc3NXjQPHprXUO/qcQCAaHMURHbs2KFEIlHy37Fjx/TII49oZGREO3fudNSYnTt3KpPJTP47deqUo6+HeStbGtWUqlexRboJXVo9s7Kl0c9mAQACKmFZlu1Zg+fOndP58+dLHrN48WJ99rOf1f79+5VIfNAdTUxMqLa2Vvfcc49+9KMf2TpfNptVKpVSJpNRMpm020x4yE5tkPyqGUlTJq3mj9q9cTlLeAEgwpz0346CiF1vvfXWlPkdp0+f1h133KGf/OQnWrVqlRYuXGjr+xBEgsVJbRDqiABAfBkPItOdPHlSLS0t+vWvf61ly5bZ/jqCSHDkRzmm/7KUGuWgsioAxJOT/pvKqiirXG2QhC7VBlnfmp4SNGprElqzZK5fzQQAhJAvQWTRokXyYeAFHnFSG4TgAQBwgt13URa1QQAAXiGIoCxqgwAAvEIQQVnUBgEAeIUggrJqaxLq3NAqSTPCSP7jzg2trIgBADhGEIEt7W1N2r1xudKpqY9f0ql6CpQBACrG8l3Y1t7WpPWtaWqDAABcQxCBI9QGAQC4iUczAADAGIIIAAAwhiACAACMIYgAAABjCCIAAMAYgggAADCGIAIAAIwhiAAAAGMIIgAAwBiCCAAAMIYgAgAAjCGIAAAAYwgiAADAGIIIAAAwhiACAACMIYgAAABjCCIAAMAYgggAADCGIAIAAIwhiAAAAGMIIgAAwBiCCAAAMIYgAgAAjCGIAAAAYwgiAADAGIIIAAAwhiACAACMucJ0A1CdiZylI/3DOjsypnkN9VrZ0qjamoTpZgEAYAtBJMS6ewfVtb9Pg5mxydeaUvXq3NCq9rYmgy0DAMAeHs2EVHfvoDr29kwJIZI0lBlTx94edfcOGmoZAAD2EURCaCJnqWt/n6wCn8u/1rW/TxO5QkcAABAcBJEQOtI/PGMk5HKWpMHMmI70D/vXKAAAKkAQCaGzI8VDSCXHAQBgCkEkhOY11Lt6HAAAphBEQmhlS6OaUvUqtkg3oUurZ1a2NPrZLAAAHCOIhFBtTUKdG1olaUYYyX/cuaGVeiIAgMAjiIRUe1uTdm9crnRq6uOXdKpeuzcup44IACAUKGgWYu1tTVrfmqayKgAgtAgiIVdbk9CaJXNNNwMAgIrwaAYAABhDEAEAAMYQRAAAgDEEEQAAYAxBBAAAGEMQAQAAxhBEAACAMQQRAABgDEEEAAAYE+jKqpZlSZKy2azhlgAAALvy/Xa+Hy8l0EFkZGREktTc3Gy4JQAAwKmRkRGlUqmSxyQsO3HFkFwup9OnT6uhoUGJBBu5OZHNZtXc3KxTp04pmUyabk4kcY39wXX2HtfYH3G6zpZlaWRkRAsWLFBNTelZIIEeEampqdHChQtNNyPUkslk5H/hTeMa+4Pr7D2usT/icp3LjYTkMVkVAAAYQxABAADGEEQiqq6uTp2dnaqrqzPdlMjiGvuD6+w9rrE/uM6FBXqyKgAAiDZGRAAAgDEEEQAAYAxBBAAAGEMQAQAAxhBEIu7kyZP64he/qJaWFs2ePVtLlixRZ2enLly4YLppkfM3f/M3+sQnPqE5c+bo6quvNt2cSHjssce0aNEi1dfXa9WqVTpy5IjpJkXOwYMHtWHDBi1YsECJRELPPfec6SZFzq5du3TTTTepoaFB8+bN01133aU333zTdLMCgyAScceOHVMul9Pjjz+uN954Qw8//LC+//3v62tf+5rppkXOhQsXdPfdd6ujo8N0UyLhxz/+sbZv367Ozk719PRo6dKluuOOO3T27FnTTYuU0dFRLV26VI899pjppkTWK6+8oi1btujw4cM6cOCALl68qE9+8pMaHR013bRAYPluDH33u9/V7t279bvf/c50UyLpySef1LZt2/TOO++YbkqorVq1SjfddJMeffRRSZf2nmpubtb999+vHTt2GG5dNCUSCT377LO66667TDcl0s6dO6d58+bplVde0S233GK6OcYxIhJDmUxGjY2NppsBFHXhwgW9/vrrWrdu3eRrNTU1WrdunQ4dOmSwZUD1MpmMJPF3+H0EkZg5fvy4HnnkEX3pS18y3RSgqLffflsTExOaP3/+lNfnz5+voaEhQ60CqpfL5bRt2zatXbtWbW1tppsTCASRkNqxY4cSiUTJf8eOHZvyNQMDA2pvb9fdd9+tzZs3G2p5uFRynQGgmC1btqi3t1fPPPOM6aYExhWmG4DKfPWrX9WmTZtKHrN48eLJ/z59+rRuu+02feITn9APfvADj1sXHU6vM9xx7bXXqra2VmfOnJny+pkzZ5ROpw21CqjO1q1b9fOf/1wHDx7UwoULTTcnMAgiIXXdddfpuuuus3XswMCAbrvtNq1YsUJ79uxRTQ0DYXY5uc5wz6xZs7RixQq98MILkxMnc7mcXnjhBW3dutVs4wCHLMvS/fffr2effVYvv/yyWlpaTDcpUAgiETcwMKBbb71VN9xwgx566CGdO3du8nPcWbrrrbfe0vDwsN566y1NTEzo6NGjkqSPfOQj+tCHPmS2cSG0fft23Xvvvfr4xz+ulStX6nvf+55GR0d13333mW5apLz77rs6fvz45Mf9/f06evSoGhsbdf311xtsWXRs2bJFTz31lPbt26eGhobJeU6pVEqzZ8823LoAsBBpe/bssSQV/Ad33XvvvQWv80svvWS6aaH1yCOPWNdff701a9Ysa+XKldbhw4dNNylyXnrppYK/t/fee6/ppkVGsb/Be/bsMd20QKCOCAAAMIbJAgAAwBiCCAAAMIYgAgAAjCGIAAAAYwgiAADAGIIIAAAwhiACAACMIYgAAABjCCIAAMAYgggAADCGIAIAAIwhiAAAAGP+P4Cv2SSqMyG3AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(x, y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.8" } }, "nbformat": 4, "nbformat_minor": 2 }